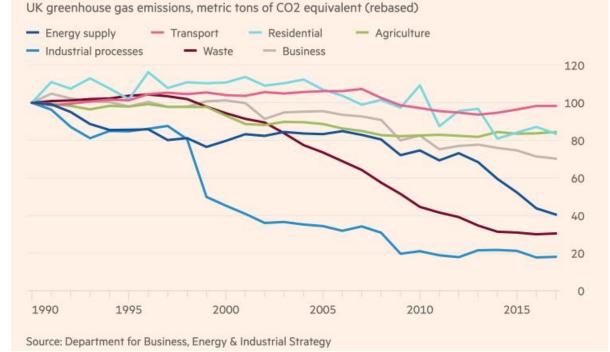
AGRI-FOOD & BIOSCIENCES INSTITUTE

Leading | Protecting | Enhancing

Dairy Symposium 30.09.19

Improving carbon efficiency in dairy systems


Dr Debbie McConnell Agriculture Branch

afbini.gov.uk

Improving carbon efficiency in dairy systems

- Agriculture currently accounts for 10 and 23% of UK and NI emissions, respectively
- Steady reductions since 1990 in emissions
- But... continued drive for sustainability in food production systems

UK becomes first major economy to pass net zero emissions law

AFBI - Agriculture Branch

300 cow dairy herd (predominantly Holstein; top 1% UK £PLI)
250 Youngstock

• Facilities:

- 50 point rotary parlour
- 1 x robotic milking machine
- Precision grassland platform

Research themes:

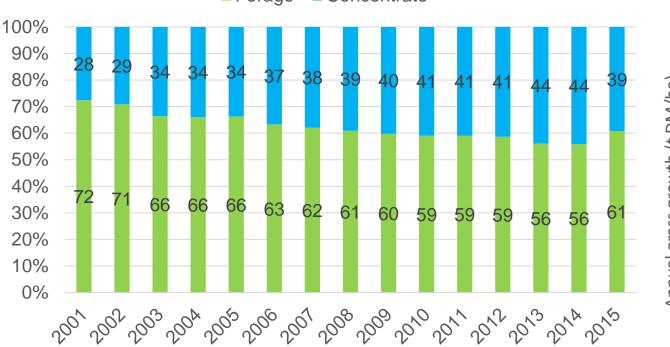
- Precision nutrition
- Reducing and replacing proteins
- Improving grass utilisation
- Environmental sustainability GHG, P, Ammonia
- Farm systems modelling

Improving carbon efficiency in dairy systems

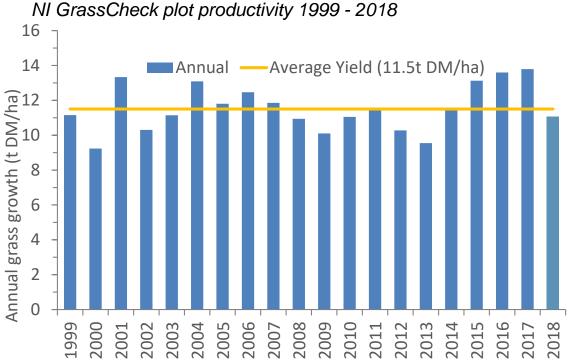
Grassland

C sequestration, N2O emissions

Enteric methane emissions



N.I. Grassland


 Grassland occupies 91% of the agricultural area of N.I. and contributes to 58% of dairy cow diets

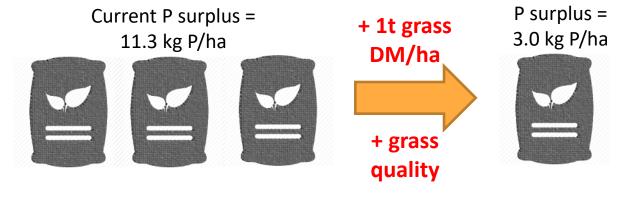
Proportion of dairy cow diets as forage or concentrate on N.I. dairy farms between 2001 and 2015. (Source: Cafre Benchmarking Data)

Forage Concentrate

- Cool, humid climate suitable for high grass productivity:
 - 250 265d growing season
 - 1138mm annual rainfall

The role of grass – improving profitability

- Well-managed grazed grass remains the lowest cost feed stuff available
- Improving performance from forage associated with increased profit on dairy farms
- Increased use of home-grown feeds reduces exposure to input price volatility


Cow performance and net margin for bottom and top 25% of milk from forage farms 2000 – 2016 (CAFRE, 2017)

	Bottom	Тор	Difference	
	25%	25%		
Yield per cow (litres)	6893	6943	+ 50	
Conc. feed rate (kg/litre)	0.39	0.23	- 0.16	
Milk from forage (litres/cow)	949	3394	+ 2445	
Net profit (£/cow)	292	556	+ 264	

Every additional 1000 litres from forage = +£10 800 profit per 100 cows

The role of grass – reducing environmental footprint

- Increasing use of home-grown forages, especially grass, provides opportunity to lower environmental footprint, including:
 - Reduced phosphorus balances

• Lower water footprint:

Forages: Grass = 690m3/t, Silage = 540m3/t Concentrate: Soya = 2640m3/t, Barley = 740m3/t, Rape meal = 730m3/t

• Reduced ammonia emissions

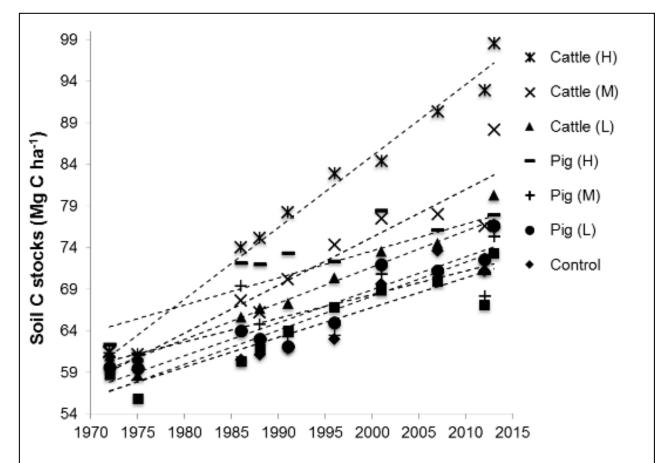
System	kg NH ₃ / cow / annum	Milk yield L / cow / annum	g NH ₃ / L milk
Fully Confined	58.8	8500	6.9
Grazing / Housing	37.4	7220	5.2

The role of grass - Carbon sequestration

- IPCC estimates C sequestration potential can be reached after 20 years
- Long-term slurry trial established at AFBI Hillsborough 1970
- Treatments:
 - Control (unfertilized)

afbi Agri-FOOD & BIOSCIENCES

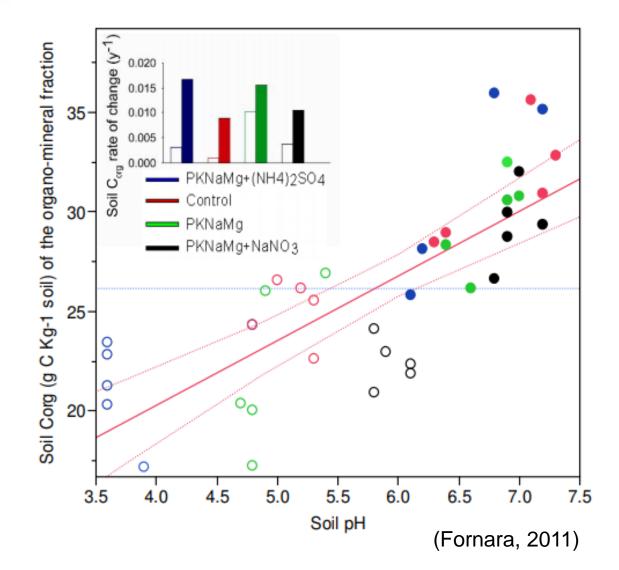
- NPK (200 kg N ha⁻¹ yr⁻¹)
- Pig slurry at 50, 100, 200 m³ ha⁻¹ yr⁻¹
- Cattle slurry at 50, 100, 200 m³
- Measurements of grass offtake and soil organic stores over 50 year period



Fornara et al. 2016, Biogeosciences

Long-term slurry trials – key observations

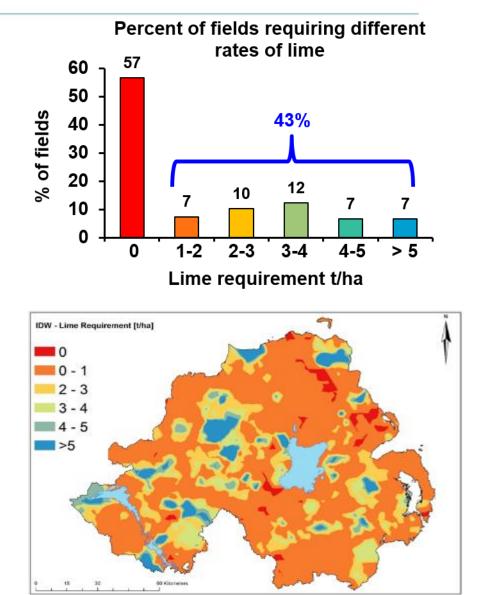
- All soils continuing to sequester C after 50 years
- Continued slurry amendments increased C sequestration rates:
 - Control (no slurry): 0.35t C/ha/yr
 - Cattle slurry (200m3/ha): 0.86t C/ha/yr
- No anticipated reduction in C sequestration rates


Improving carbon efficiency in dairy systems: Grassland management

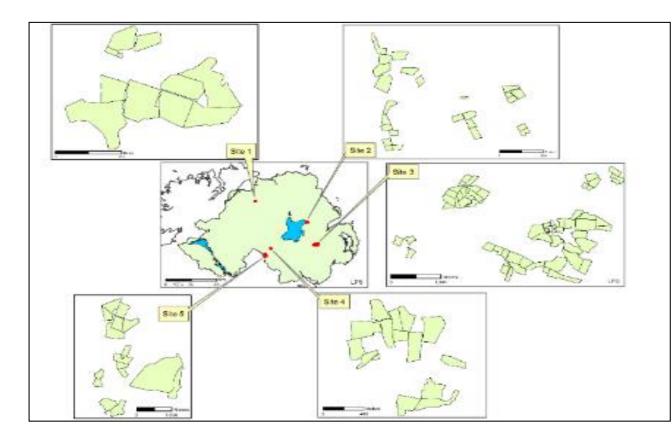
- Carbon sequestration, impact of:
 - \circ Liming
 - Reseeding
 - Fertiliser addition

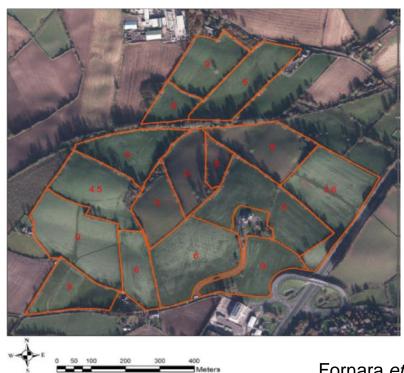
Carbon sequestration: the importance of pH

- Positive relationship between soil pH and carbon sequestration:
 - Increased microbial activity
 - Long-term studies show SOC increases 2 – 20 times
- Opportunity to improve soil pH content in NI soils



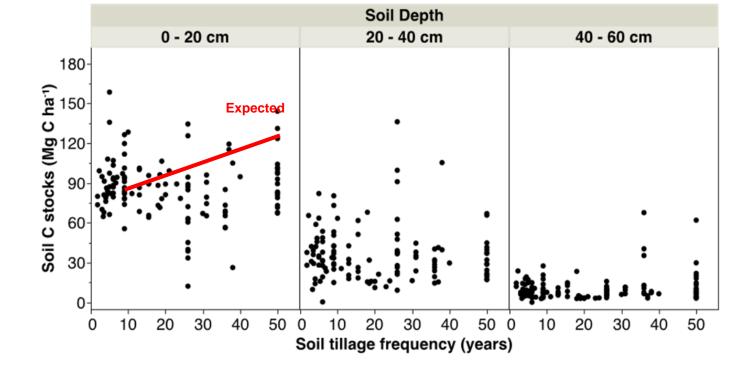
Carbon sequestration: the importance of pH


- AFBI research to better understand, protect and enhance soil fertility to deliver high levels of grass growth whilst using nutrients efficiently
- Overall 43% of 805,000 ha grassland (excluding rough grazing – peaty land) requires lime
- Extra grass represents an almost 5 fold return on the lime investment



Carbon sequestration: the impact of reseeding

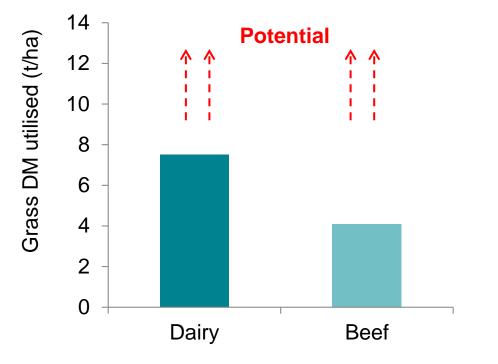
- Obtain field records for 126 sites across N.I. from commercial farms
- All receiving >150kg N/ha
- Number of reseeding events identified for last 50 years



Fornara et al. Under review

Carbon sequestration: the impact of reseeding

- Most carbon stored in top 20cm of soil
- No negative impact of reseeding on soil carbon stores
- Short term increases in respiration offset by long-term increases in microbial biomass
- Further sites needed!



Carbon sequestration: the role of productive grasslands

- Nitrogen is essential to bind C in the soil
- Nutrient amendments associated with increased C sequestration (long-term slurry experiment)
- 1985 1998, increased fertiliser N:
 - \circ 144 \rightarrow 240kg N/ha = + 9% SOC
 - \circ 96 \rightarrow 228kg N/ha = +14% SOC

Estimated grass utilisation on NI farms (Mayne and Bailey, 2016)

Significant potential to increase productivity of N.I. grasslands

GrassCheck NI: Grass growth and quality monitoring

- Established in 1998 20 years of continuous data
- Grass growth and quality monitoring project
- Weekly monitoring of two core locations:

CAFRE, Greenmount

AFBI, Hillsborough

- Plot management replicates intensive dairy grazing 21-day rotation
- Long-term weather records
- Weekly herbage mass and quality measurements
- Grass growth forecasts published throughout the grazing season

- 2017: GrassCheck expanded to include data recording of grass growth and grassland management on commercial farms
- Since 2018 48 dairy, beef and sheep farmers
- Range of:
 - production systems
 - land type
 - growth potential

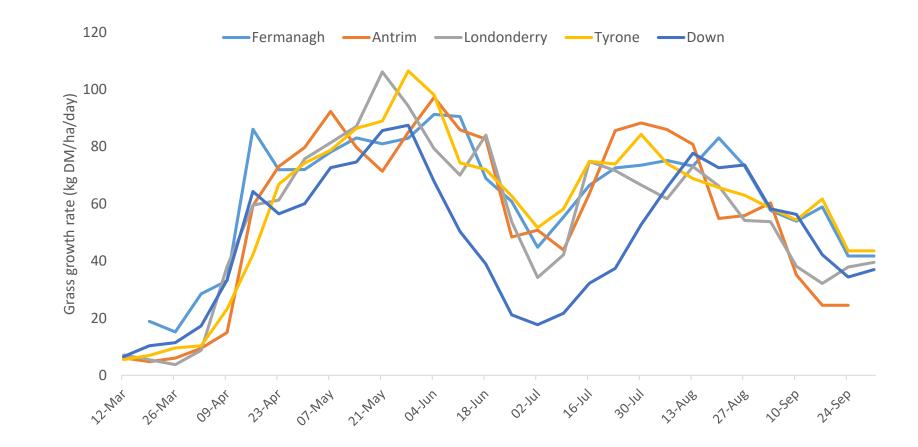
• Research aims:

- Provide detailed understanding of grass growth potential across Northern Ireland
- Identify actual variability in grass production and quality on commercial farms
- Provide core evidence base for policy on the grassland productivity of Northern Ireland farms

• Knowledge exchange benefit:

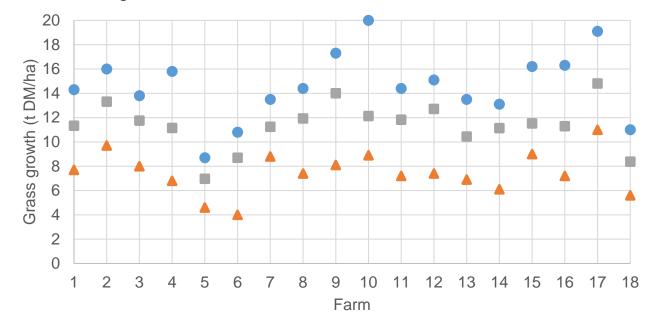
- Provides weekly bulletin to assist farmers in grassland management decisions
- 7- and 14-days predictions of grass growth to aid planning for grazing/grass-based systems

Data recording


- Automated weather stations
 - 30 minute intervals, includes soil moisture/temp
- Weekly grass quality
- Weekly grass growth
- Stocking rates
- Grazing events and grass utilisation
- Reseeding, soil and nutrient management
- Annual summary data paddock-by-paddock grass performance

Agr	iNet			E	Facebook Page Twitter Feed YouTube Channel
Home	Farm Events	Field Events	Farm Repo	rts Settings	Support
Home	Me	ssages (0) 🧋 Growth	💄 Growth 🛛 🔒 Sec	urity Debbie McConnell (77	36372808) 🔶 Log.out
	Grass Covers	Grass Wedge	Grass Budget	Spring/Autumn Planners	
	Group Summary	Farm Summary	Best Paddocks	Paddock Cards	
	Milk Sales	Sow Grass	Soil Sample	Apply Fertilizer	
	Apply Spray	Map & Paddocks	Group Invitations	Request	

• 2018 Grass growth curve by county for GrassCheck dairy farms



• 2018 Monthly grass growth (t DM/ha) by county on dairy farms

	Antrim	Down	Fermanagh	Londonderry	Tyrone
March	0.2	0.3	0.4	0.2	0.2
April	1.6	1.5	1.9	1.7	1.5
May	2.6	2.4	2.5	2.8	2.8
June	2.2	1.1	2.1	1.9	2.1
July	2.2	1.1	2.0	1.9	2.2
August	2.1	2.2	2.3	1.9	2.1
September	0.8	1.3	1.5	1.2	1.6
Total	11.6	10.0	12.8	11.6	12.4

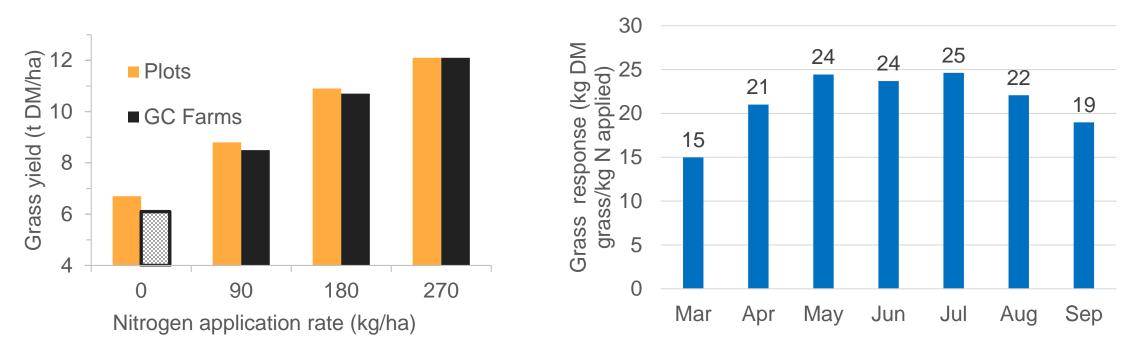
Average, highest and lowest growth fields for GrassCheck dairy farms during 2018

Variation between highest and lowest growth paddocks = **7.2t DM/ha**

Feed value lost = £974/ha

Grass measurement key to identifying poor performing areas

● Highest paddock ▲ Lowest paddock ■ Average growth

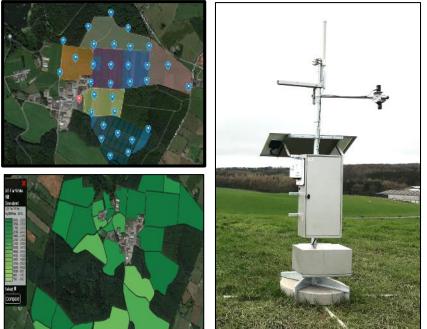


GrassCheck NI: Nitrogen management

- Nitrogen fertiliser application currently c. 150kg N/ha
- 1kg N fertiliser @ £0.8/kg delivers:

21kg DM grass @ £0.136/kg = £2.86

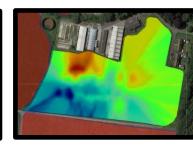
Return on Investment = 3.6:1



A connected landscape integrating soil, plant, animal and climate data to improve our understanding and management of grasslands

Platform infrastructure:

- Coverage of dairy and beef systems (78ha)
- Soil, NDVI, Satellite, Lidar, animal based data feeds
- GPS soil analysis, fertiliser and slurry application
- In-field animal monitoring: rumination, activity, concentrate feed stations
- Live streams of data to online platform for rapid decision making for grassland management
- Integration of soil, plant, animal and climate data on one platform

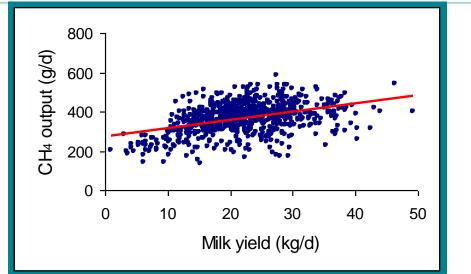


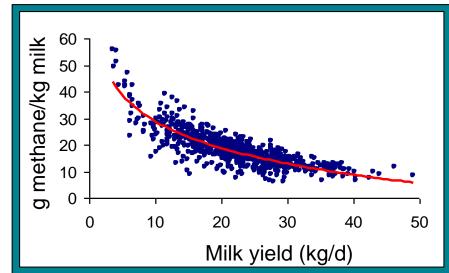
Improving carbon efficiency in dairy systems

Grassland

C sequestration, N2O emissions

Enteric methane emissions





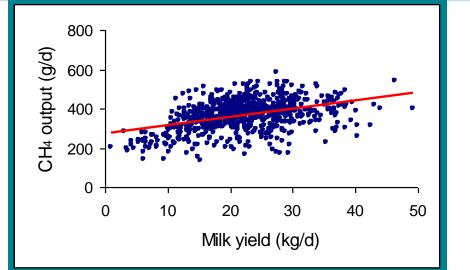
AFBI research on CH₄ emissions from ruminants

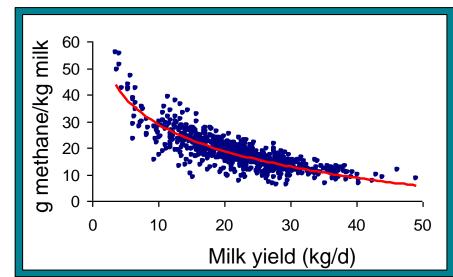
- Large animal respiration calorimeters installed at AFBI in 1993, and over 1500 animals subject to 'energy metabolism' measurements
- Provided a huge data base on CH4 production from a wide range of animals types, physiological stages and diets
- Data has been extensively mined and key drivers of CH₄ production identified for 'indoor diets'

Measuring CH4 production at AFBI

Large and small animal respiration calorimeters

SF6 technique to measure CH4 production from grazing livestock

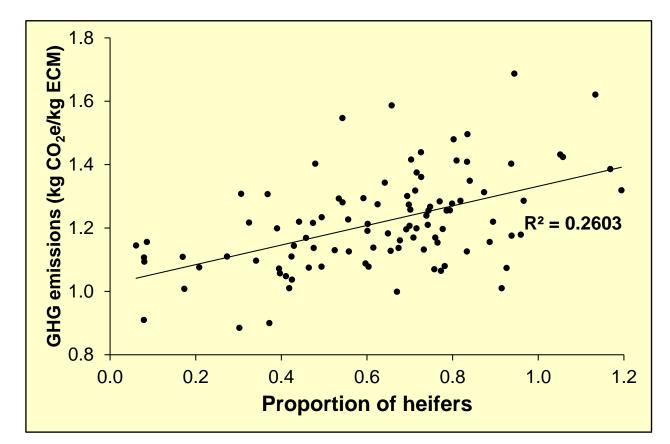




AFBI research on CH4 emissions from ruminants

- Large animal respiration calorimeters installed at AFBI in 1993, and over 1500 animals subject to 'energy metabolism' measurements
- Provided a huge data base on CH4 production from a wide range of animals types, physiological stages and diets
- Established strong link between milk yield and C efficiency
- Limited impact of either system or breed type on C efficiency

Why does methane production per litre of milk decrease with higher milk yields?

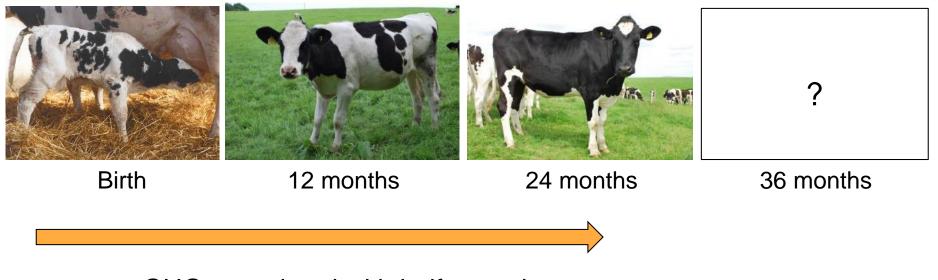


af

Factors affecting carbon efficiency in dairy production systems

Functional traits equally important as poor performance in these areas can lead to:

- Increased number of heifers on the farm
- Cows not achieving their mature milk yield potential



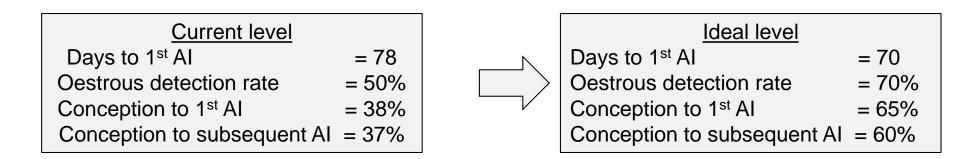
Relationship between GHG emissions/kg of ECM milk and the proportion of heifers on a farm (100 farms)

(Ferris 2014)

GHG associated with heifer rearing

GHG associated with heifer rearing to 24 months approximately 4200 kg CO_2^{e} /heifer

23% of emissions on average Northern Ireland systems are due to heifer rearing



Effect of replacement rate and age at first calving on total GHG production

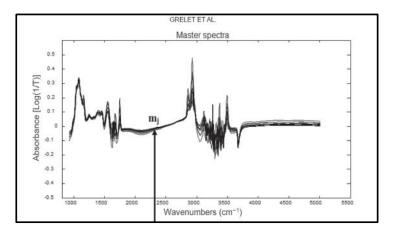
	Scenario 1	Scenario 2	Scenario 3
Replacement rate (%)	15	30	30
Age 1 st calving (months)	24	24	36
Number of replaced heifers on farms	30	60	90
GHG associated with heifer rearing/year (kg CO ₂ equivalent)	60, 000	120, 000	315, 000

Effect of improving fertility on GHG emissions from dairy systems

Improving fertility would reduce which farm methane emissions by 24%

Garnsworthy et al, 2004

Any strategy which will improve longevity, without reducing cow performance, will reduce both methane and nitrous oxide emissions


Use of indices such as £PLI (United Kingdom) will allow cows with good functional performance to be selected

C efficiency on-going work

- 1. Dietary additives:
 - 'Biological additives': eg probiotics
 - 'novel plants': eg essential oils, seaweeds,
- 2. Improved diet quality
- 3. Genetic selection:
 - Higher performing animals (lower production per unit product)
 - More efficient animals (high 'residual feed intakes')
 - Genetically low CH4 emitters

Summary

- Considerable improvements have been made in C efficiency in NI farms in the last few decades
- N.I. grasslands have a key role to play in sequestering carbon and good grassland management practices will help achieve this:
 - Liming
 - Reseeding
 - Targeted nutrient use
- Improving technical efficiency on farm remains a key driver of C efficiency targeting production and functional traits are essential

